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ABSTRACT

In a recent paper a class of complex, compact and non-Kéhlerian manifolds
was constructed by S. Léopez de Medrano and A. Verjowsky. This class
contains as particular cases Calabi-Eckmann manifolds, almost all Hopf
manifolds and many of the examples given previously by J.-J. Loeb and
M. Nicolau. In this paper we show that these manifolds are endowed with
a natural non-singular vector field which is transversely Kahlerian, and
that analytic subsets of appropriate dimensions are tangent to this vector
field. This permits to give a precise description of these sets in the generic
case. In the proof, an important role is played by some complex abelian
groups which are biholomorphic to big domains in these manifolds.

0. Introduction

In [2] we presented a general procedure of construction of complex structures
on a product of two odd-dimensional spheres, giving in particular all the pre-
viously known examples: elliptic curves, Hopf manifolds and Calabi-Eckmann
manifolds. These complex manifolds were obtained as a part of the orbit space
of a holomorphic vector field in C* of Poincaré-Dulac type. In [3], using vector
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fields of Siegel type, S. Lépez de Medrano and A. Verjovsky built a large class of
compact complex manifolds (called here LM-V manifolds) which includes almost
all our examples.

Except in the case of elliptic curves, LM-V manifolds do not admit a Kéhlerian
structure. Nevertheless they enjoy a very special property: we show that on any
such manifold there exists a naturally defined holomorphic vector field 5 which is
non-singular and transversely Kahlerian. This means that the foliation defined by
7) is transversely modeled on a Kahlerian manifold. This generalizes the fact that
classical Hopf manifolds and Calabi-Eckmann manifolds are principal bundles
over Kihlerian manifolds (namely P™and P" x P*) with fibre an elliptic curve.
In these cases 7 is just the fundamental vector field of the action. It is also well
known that in the case of classical Hopf manifolds and Calabi-Eckmann manifolds
any complex submanifold Y of positive dimension is saturated by the flow of 5
and therefore Y is the pullback of a complex submanifold in the base space of
the fibration. In Theorem 1 we generalize this result to LM-V manifolds. The
proof makes an essential use of the fact that the flow 7 is transversely Kéahlerian.
Using also some properties of complex abelian groups we give in Theorem 2 a
description of the complex submanifolds of LM-V manifolds in many cases.

Given a real manifold M we shall denote by TM its tangent bundle and by
(T'M); the tangent space at £ € M. If M is a complex manifold, J will denote
the tensor field defining the complex structure. Then the real vector bundle TM
inherits a complex structure defined by ¢ - v = Jv and we set Cv = Rv @ RJv.
Through the paper any holomorphic vector field 77 on a complex manifold M
will be considered as a real vector field. With this convention, if a holomorphic
vector field 7 is tangent to a complex submanifold Y of M at a point 2 € Y then
Cn, C(TY),.

1. Transversely Hermitian vector fields

Definition 1: Let M be a complex manifold and v a (real) non-singular vector
field on M. A (real) 2-form w is said to be transversely Hermitian with respect
to v if

(1) Jw =w and, for any z € M, Ker w, = Cv, = Rv, ®RJv,, and

(2) the Hermitian quadratic form h on TM/Cv induced by w is positiye definite

(recall that h is given by h(u1,us) = w(Juy, ug) + iw(uy, ug)).

If the 2-form w is closed we say that v is transversely Kéahlerian.

The following proposition is essentially due to Abe {1].
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PROPOSITION 1: Let M, v and w be as in the above definition and suppose that
M is compact and w* is exact for some k € N*. Then any analytic subset Y of
M of pure dimension k is tangent to Cv (at the smooth points of Y').

Remark: We will use the above proposition mainly when the form w is closed.
In this situation the vector fields v and ‘v define a 2-dimensional foliation and
the form w is basic with respect it, i.e. w is left invariant by the flows of v
and iv. Moreover, in this case w* is also exact for any k¥’ > k and therefore
the conclusion of the proposition also holds for any analytic subset Y of pure

dimension > k.

Proof: Assume that Y has pure dimension k. There is a canonical orientation
on Y given by the complex structure J. Namely, if {ej,...,ex} is a C-basis of
(TY)y (at a smooth point y € Y) then {e1, Jey, ..., ex, Jex} is positive. Let wy
denote the restriction of w to (I'Y),. One sees easily that either Cv is contained
in (TY)y, and then w'; = 0, or w* > 0. Using Stokes formula (for singular

Y
analytic sets) and the exactness of w* one obtains

/wkzﬂ.
Y

But the positivity of w® implies then that w* = 0 and therefore Cv is tangent to
Y at every smooth point. |

2. The manifolds N = N(A)

Let A = (A1,...,An) € C® be a sequence of non-zero complex numbers fulfilling
the following two conditions:
(1) A is in the Siegel domain, i.e. the convex hull of Aq,..., A, contains 0,

(2) one has 0 ¢ [X;, A;] for ¢ # j.
In {3] S. Lépez de Medrano and A. Verjovsky associate, to any such sequence
A, a compact complex manifold N = N(A) (called a LM-V manifold for short),

which can be constructed as follows. Let us consider the holomorphic vector field
on C" defined by

- 0
f = Z )\ij 527
j=1
It induces a C-action on C" given by

(t,2) eCx C™ = (eM,..., M) e Cm.
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For a given point z € C* {0} let I, denote the subset of {1, ...,n} characterized
by j € I, & z; # 0 and define

S ={z € C* ~{0}| the convex hull of the (};) ez, contains 0}.

The set S is open in C* and can also be described as the union of all the Siegel
leaves of €, i.e. orbits of £ which do not accumulate to the origin.
The radial vector field
= 0
R= ; Z]' a—z;

induces a C*-action given by the non-zero homotheties of C*. Since the vector
fields £ and R commute they define a C x C*-action on C* which restricts to
S. It is shown in [3] that the quotient S/C x C* is a compact complex manifold
denoted by N. We shall also need the following alternative description of N (cf.
[3]). Define

M ={zeC"| Zx\j|zj|2 = 0}.

Every Siegel leaf intersects M’ at a unique point and the natural map
M - §/C

is a diffeomorphism of real manifolds. The intersection M = M’ N 2"~ 1 is a
real manifold with a S'-action induced by the homotheties of modulus 1, that is,
by the flow associated to the vector field ¢R. Moreover, there is a commutative
diagram

D) M

| T

M/$' —— N = §/Cx C*

where 7 is the canonical projection, v is the composition map of the natural
inclusion M < S and the projection S - §/C x C* and ¢ is a real analytic
diffeomorphism between M/S' and N.

Using this fact, Lépez de Medrano and Verjovsky have studied in [3] the topol-
ogy of N. In particular they have proved that for n > 3 there is no Kahlerian
structure on N (in fact there is no symplectic structure on it). In contrast we
shall build a transversely Kahlerian holomorphic vector field  on N, i.e. a non-
singular holomorphic vector field 7 with the property that there exists a 2-form
w which is transversely Hermitian with respect to n and closed.
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The special case where A = (A1,...,A,) withIm A; > Ofor j #nand Im A, <
0 was studied by the authors in [2]. In this situation N is diffeomorphic to the
product of two odd dimensional spheres.

3. A transversely Kiahlerian vector field on N

In this section we construct a non-singular vector field 7 on N and a differentiable
2-form w which is closed and transversely Hermitian with respect to 7 in the sense
of Definition 1.

The holomorphic vector field 7 on C* defined by

. = )
ij= Z( Re ’\j)zja_zj
j=1

commutes with £ and R. Therefore it projects onto a holomorphic vector field
non N = §/C x C*. The following lemma implies that the vector field 5 is
non-singular.

LEMMA 1: The three vectors 7,, £, and R, are linearly independent over C at
every point z of S.

Proof: Suppose that there is a linear relation: af}, + b€, + cR, = 0. For any
index j such that z; # 0 (i.e. j € I,) one has

aRe); +bX; +c=0.

Since z € S there exist (d;)jer, with d; > 0 and 3., d; = 1 such that
>jer, @;2; = 0. From these relations one obtains

c:c-(Zdj) =0.
JjEl;
Therefore a7}, + b¢, = 0. If (a, b) # (0,0) then the complex numbers (A;);er, are
on a same real vector line, but this contradicts the condition (2) fulfilled by A.
Thusa=b=c=0. ]

Let us construct the 2-form w. The standard Kihlerian form of C* is given
by Q(z,y) = Im(z,y) = Im (27=1 z;y;). Denote by Qs its restriction to M.
Recall that the S'-action on M is induced by the vector field iR. Observe that
#;r0 = 0 and that s is closed, being a restriction of a closed form. This
implies that L;p = 0. It follows from these facts that there exists a (unique)
closed 2-form w; on M/S? such that m*w; = Qp. Now define w as being equal
to {¢71)*w; (cf. diagram (D)).
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PROPOSITION 2: The 2-form w is transversely Kihlerian with respect to 7).

Proof: The vector fields U and V on M defined by

U=i-
j=1

n
=

0 & 9
(Re X)zige and V=i 3 (Tm d)ay

j=1

commute with iR and therefore they project onto vector fields 7.U and 7.V on
M/S?. One has ¢, U = .U =in and ¢,m.V = .V = 9,(£ — ) = —n. Since

(TM), = {¢ € C*| Im(z,{) = Im(U, () = Im(V; () = 0}
={¢ e C*|QR;, () = AU, () = Q(V:, () = 0},

Ker Qs is generated by iR, U and V. This implies that Kerw; is generated by
7, U and 7, V. Using the fact that w = (¢~1)*w, one obtains Kerw = C1.
Since the 2-form w is closed by construction it is sufficient to prove that it
induces a positive definite Hermitian metric on TN/Cr. Let us denote by TcM
the maximal complex subbundle of TM, that is TcM = TM NiTM. One has

(TeM), ={{ € C*| (2,4} = (U,{) = (V,{) = 0}

The bundle Tc M is preserved by the S!-action induced by ¢R, being the restric-
tion of a holomorphic action, and projects into a complex bundle . (Tc M) over
M/S? included in T'(M/S'). Moreover, given z € M there is a commutative
diagram

(TcM),

(W*(TCM))‘N(Z) "? T(S/C x C* )11’(2)

where 7, is a C-linear isomorphism and the maps ¢, and ., are C-linear in-
jections. The image space ¥.((TcM),) is naturally identified to the quotient
(T'N)y(z)/Cn and the restriction ' of w to it is J-invariant (here J = i). There-
fore the: Hermitian form associated to w’ is positive definite since the same is
true for the restriction of Qps to (TcM),. This implies that w is transversely
Kihlerian with respect to 7. ]

To each manifold N = N(A) we associate an integer k(IN) defined as being the
least positive integer s such that e® = 0, where e € H2(M/S?) is the Euler class
associated to the S'-bundle 7: M — M/S'. When N is diffeomorphic to the
product of two spheres (the case considered in [2]), then k(N) = 1. Otherwise
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1 < k(N) < dimg N (c¢f. [3] where a combinatoric definition of k(N) in terms
of A is also given). Observe now that the Euler class e is represented in the de
Rham group H2(M/S',R) by the 2-form 2w;. This is verified as follows. The
restriction o on M of the 1-form 3 on C" defined by

B(t) = —Im(R, t)

satisfies a(iR) = 1 and a direct computation shows d8 = 2Q. Therefore da =
Qp = 7*(2w,). Finally, one sees that k() is the least positive integer s such
that w® is exact.

Using Proposition 1 one obtains the following theorem:

THEOREM 1: Every analytic subset of N of pure dimension > k(N) Is tangent
to 1. In particular, every complex hypersurface of N is tangent to 7.

In the case where N is diffeomorphic to a product of two spheres, k(N) = 1
and therefore any analytic subset of N of positive dimension is tangent to 7.

4. Submanifolds of N in the generic case

Let A = (A1,...,\,) € C™ be a sequence of non-zero complex numbers fulfilling
conditions (1) and (2) as in Section 2. We say that A satisfies the genericity
condition (C) if

P
© Ve, ..., e, € Q  with ch:O one has
j=1

P
ZC]')\]'ZO = Cj:() Vj.
j=1
In any given manifold N = N(A) there is the following class of complex sub-

manifolds. Let I be a subset of {1,2,...,n} such that (};);er is in the Siegel
domain and denote

Si={z=(z1,...,z,) €S|z =0for j ¢ I}.
Then S; is saturated by the action of C x C* and
Ny =8/CxC*

is a closed complex submanifold of N. The following theorem says that, in the
generic case, any complex submanifold of a certain dimension is of this type.
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THEOREM 2: Assume that A fulfils the genericity condition (C). Then any ana-
lytic subset of N of pure dimension > k(N) is a union of manifolds Nr.

Remark: As before, in the case of a product of spheres (cf. [2]), the conclusion
holds for any analytic set of positive dimension. In this case, a partial description
of the analytic subsets of N, when no genericity assumptions are made, was given
in [2].

Proof: The open subset (C*)™ of C* is contained in S and saturated by the
action of C x C*. The quotient

G = (C*)"/C x C*

is an open and dense subset of N. It is sufficient to prove that any analytic subset
of G, which is tangent to 5, is G itself. In fact, an analytic subset Y of N in the
hypothesis of the theorem is tangent to 7. f Y contains a point of G then Y NG
is G itself and Y = N. Otherwise Y must be contained in some Ny (I # @). But
Ny is also a LM-V manifold associated to some A; C A and, since A satisfies the
genericity condition {C), so does A;. Moreover, k(N1) < k{(N) as one can see by
considering the restriction of wy to Nj. Then one concludes by induction.

Notice that G is a complex Lie group and that the holomorphic vector field n
is left invariant. In fact G is isomorphic to the group (C*)?/C, with p = n — 1,
the isomorphism being induced by the map

n Zn

_a _ %n-1
(21,...,Zn)l—) wl—;—,...,w,— N

and where the C-action on (C*)? is the one associated to the vector field

)4
£’ = Zy,w'awi With Hi = A.’ - An-

i=1

Then the holomorphic vector field 7 is seen as the projection of the vector field
7 =YY" (Re p;)w;%;. We take from now on this new model for G. Remark
that the genericity condition (C) is equivalent to saying that the coefficients
P41, Hp are linearly independent over Q.

Let @ denote the canonical projection of (C*)? onto G and set K = w((S?)?).
Let Y be an analytic subset of G tangent to . We assume for convenience that
the identity element e of G belongs to Y. The statement will follow from the

following facts:



Vol. 110, 1999 NON-KAHLERIAN MANIFOLDS 379

(a) the compact subgroup K is the closure of the complex one-parameter group
generated by 7, and
(b) (TG)e = (TK). +i-(TK)..
In fact, since Y is tangent to C1, condition (a) implies that ¥ contains K and
then Y = G by condition (b).
The Lie algebra Lie ((C*)?) of (C*)? is naturally identified to C? in such a

way that the exponential map is given by (wy,...,wp) — (e*,...,e“?). Then
we have Lie ((S')?) = iR? and Lie(G) = C?/C - §, where £ = Y_F_, pi€; and

€1,...,€p denotes the canonical basis of CP. Notice that the Lie algebra morphism
w, coincides with the canonical projection C° — Lie(G). Now (b) is obvious
since (TK), = w,Lie((S')?) and Lie((S')?) + i - Lie ((S*)?) = Lie ((C*)?).

The vector #} in CP associated to the left invariant vector field i’ is §fj =
3P _,(Re p;)€i. The two vectors #ij and £ — #} belong to Lie ((S*)?). This implies
that Cn is included in Lie (K'). In order to conclude it is sufficient to prove that
the subgroup H of (S!)? associated to the Lie subalgebra generated by i} and
£—1jis dense in (S)?. For this we show that any continuous H-invariant function
f on (8')? is constant. Given m € Z?, let f(m) denote the associated Fourier
coefficient of f. For any t € R one has

f(m) - (LR mIm) = f(m)
and

f(m) - QAR EI™ = f(mm).
This means that, if f(m) # 0, then

> (Repx)my = 3 (m pe)ms = 0

and therefore Y, myur = 0. But the Q-independence of the yj implies m = 0,
showing that f must be constant. This finishes the proof. [ |
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