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ABSTRACT 

In a recent  paper  a class of  complex,  compac t  and  nonoK~hler ian mani fo lds  

was cons t ruc ted  by S. L6pez de Medrano  and  A. Verjowsky. Th i s  class 

con ta ins  as par t icu lar  eases C a l a b i - E c k m a n n  manifolds ,  a lmos t  all Hopf  

mani fo lds  and  m a n y  of  t he  examples  given previously by J . -J .  Loeb and  

M. Nicolau. In  th is  paper  we show t h a t  these  manifo lds  are endowed wi th  

a na tu r a l  non-s ingula r  vector  field which is t ransverse ly  K~.hlerian, and  

t h a t  ana ly t ic  subse t s  of  appropr ia te  d imens ions  are  t angen t  to th i s  vector  

field. Th i s  pe rmi t s  to  give a precise descr ipt ion of  these  sets  in t he  generic 

case. In the  proof, an  impor t an t  role is played by some  complex abe l ian  

g roups  which  are b iholomorphic  to big domains  in these  manifolds .  

O. I n t r o d u c t i o n  

In [2] we presented a general procedure of construction of complex structures 

on a product  of two odd-dimensional spheres, giving in particular all the pre- 

viously known examples: elliptic curves, Hopf manifolds and Calabi-Eckmann 
manifolds. These complex manifolds were obtained as a part of the orbit space 
of a holomorphic vector field in C ~ of Poincar6--Dulac type. In [3], using vector 
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fields of Siegel type, S. L6pez de Medrano and A. Verjovsky built a large class of 

compact  complex manifolds (called here LM-V manifolds) which includes almost 

all our examples. 

Except in the case of elliptic curves, LM-V manifolds do not admit  a K~ihlerian 

structure. Nevertheless they enjoy a very special property: we show that  on any 

such manifold there exists a naturally defined holomorphic vector field ?7 which is 

non-singular and transversely K/ihlerian. This means that  the foliation defined by 

is transversely modeled on a K/ihlerian manifold. This generalizes the fact tha t  

classical Hopf manifolds and Calabi-Eckmann manifolds are principal bundles 

over K/ihlerian manifolds (namely Fmand F r x ]I ~ )  with fibre an elliptic curve. 

In these cases ?7 is just  the fundamental vector field of the action. I t  is also well 

known that  in the case of classical Hopf manifolds and Calabi -Eckmann manifolds 

any complex submanifold Y of positive dimension is saturated by the flow of 

and therefore Y is the pullback of a complex submanifold in the base space of 

the fibration. In Theorem 1 we generalize this result to LM-V manifolds. The 

proof makes an essential use of the fact that  the flow ?7 is transversely K/ihlerian. 

Using also some properties of complex abelian groups we give in Theorem 2 a 

description of the complex submanifolds of LM-V manifolds in many cases. 

Given a real manifold M we shall denote by T M  its tangent bundle and by 

( T M ) ~  the tangent sPace at x E M. If M is a complex manifold, J will denote 

the tensor field defining the complex structure. Then the real vector bundle T M  

inherits a complex structure defined by i . v = J v  and we set C v  = R v  G ]~Jv. 

Through the paper  any holomorphic vector field r/ on a complex manifold M 

will be considered as a real vector field. With this convention, if a holomorphic 

vector field ~ is tangent to a complex submanifold Y of M at a point z C Y then 

C~lz c ( T Y ) z .  

1. T r a n s v e r s e l y  H e r m i t i a n  v e c t o r  fields 

Definition 1: Let M be a complex manifold and v a (real) non-singular vector 

field on M. A (real) 2-form w is said to be transversely Hermit ian with respect 

to v if 

(1) Jw  = w and, for any z E M, Ker wz - - C v z  = R v z  ~ R J v z ,  and 

(2) the Hermit ian quadratic form h on T M / C v  induced by w is positiye definite 

(recall that  h is given by h(Ul, u2) = w ( J u l ,  u2) -t- iw(ul ,  u2)). 

If the 2-form w is closed we say that  v is transversely K~ihlerian. 

The  following proposition is essentially due to Abe I1]. 
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PROPOSITION 1: Let M,  v and w be as in the above definition and suppose that 

M is compact and w k is exact for some k �9 N*. Then any analytic subset Y of  

M of pure dimension k is tangent to C v (at the smooth points of Y) .  

Remark: We will use the above proposition mainly when the form w is closed. 

In this situation the vector fields v and iv define a 2-dimensional foliation and 

the form w is ba s i c  with respect it, i.e. w is left invariant by the flows of v 

and iv. Moreover, in this case w k' is also exact for any k ~ > k and therefore 

the conclusion of the proposition also holds for any analytic subset Y of pure 

dimension _> k. 

Proofi Assume tha t  Y has pure dimension k. There is a canonical orientation 

on Y given by the complex structure J .  Namely, if { e l , . . . ,  ek} is a C-basis of 

(TY)y  (at a smooth point y �9 Y) then {el, J e l , . . . ,  ek, Jek} is positive. Let w~ 

denote the restriction of w to (TY)y .  One sees easily that  either Cv is contained 

k > 0. Using Stokes formula (for singular in (TY)y ,  and then wy k : 0, or Wy 

analytic sets) and the exactness of w k one obtains 

y W k = 0 .  

But the positivity of w k implies then that  w k - 0 and therefore Cv is tangent to 

Y at every smooth point. | 

2. T h e  m a n i f o l d s  N = N(A) 

Let A = (A1, . . . ,  A~) �9 C ~ be a sequence of non-zero complex numbers fulfilling 

the following two conditions: 

(1) A is in the Siegel domain, i.e. the convex hull of A1, . . . ,  An contains 0, 

(2) one has 0 ~ [As, ~j] for i r j .  

In [3] S. L6pez de Medrano and A. Verjovsky associate~ to any such sequence 

A, a compact  complex manifold N = N(A) (called a LM-V manifold for short),  

which can be constructed as follows. Let us consider the holomorphic vector field 

on C n defined by 

~ =  j j 

I t  induces a C-action on C '~ given by 

(~, z) �9 C • C ~ -~ ( e ~ t t , . . . ,  e ~"t) �9 C ~. 
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For a given point z E C '~ \ { 0 }  let Iz denote the subset of {1 , . . . ,  n} characterized 

by j e I ,  r zj ~ 0 and define 

S = {z E C ~ \{0}J the convex hull of the (Aj)jei = contains 0}. 

The set S is open in C ~ and can also be described as the union of all the Siegel 

leaves of ~, i.e. orbits of ~ which do not accumulate to the origin. 

The radial vector field 
0 R--  ZJ zj _- 

i n d u c e s  a (;*-action given by the non-zero homotheties of C ~. Since the vector 

fields ( and R commute they define a C x (;*-action on (;~ which restricts to 

S. It  is shown in [3] that  the quotient S/C x 12" is a compact complex manifold 

denoted by N.  We shall also need the following alternative description of N (of. 

[31). Define 
U '  = {z e CnJ Z A j J z j l  2 = 0}. 

Every Siegel leaf intersects M ~ at a unique point and the natural  map 

M' -~ S/C* 

is a diffeomorphism of real manifolds. The intersection M = M ~ n S 2~-1 is a 

real manifold with a Sl-act ion induced by the homotheties of modulus 1, tha t  is, 

by the flow associated to the vector field iR. Moreover, there is a commutat ive 

diagram 

(D) M 

M/S* r ) N = S/C x C* 

where 7r is the canonical projection, r is the composition map of the natural  

inclusion M ~ S and the projection S ~ S /C  x C* and r is a real analytic 

diffeomorphism between M / S  1 and N. 

Using this fact, L6pez de Medrano and Verjovsky have studied in [3] the topol- 

ogy of N .  In particular they have proved that  for n > 3 there is no K/ihlerian 

structure on N (in fact there is no symplectic structure on it). In contrast we 

shall build a transversely K~lalerian holomorphic vector field rl on N,  i.e. a non- 

singular holomorphic vector field r /wi th  the property that  there exists a 2-form 

w which is transversely Hermitian with respect to rl and closed. 
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The special case where A ---- ( / ~ 1 ,  �9 �9 �9 , A?%) with Im Aj > 0 for j ~ n and Im A?% < 

0 was studied by the authors in [2]. In this situation N is diffeomorphic to the 

product of two odd dimensional spheres. 

3. A t r a n s v e r s e l y  K~ihler ian  v e c t o r  field on  N 

In this section we construct a non-singular vector field ~? on N and a differentiable 

2-form w which is closed and transversely Hermitian with respect to y in the sense 

of Definition 1. 

The holomorphic vector field ~ on C?% defined by 

7% 0 0  
j = l  

commutes with ~ and R. Therefore it projects onto a holomorphic vector field 

7/ on N = S / C  x C*. The following lemma implies that  the vector field y is 

non-singular. 

LEMMA 1: The three vectors ~z, ~z and Rz are linearly independent over C at 

every point z of $. 

Proof: Suppose tha t  there is a linear relation: as + b~ + cR~ = 0. For any 

index j such that  zj ~ 0 (i.e. j C I~) one has 

a Re Aj + bAj + c = O. 

Since z E S there exist (dj)jeIz with dj >_ 0 and ~-~jeIz dj -- 1 such that  

]~-~jezz dj),j = 0. From these relations one obtains 

c=c.(Ed )=0 
jEIz 

Therefore a ~  + b~  -- 0. If (a, b) ~ (0, 0) then the complex numbers (Aj)jeI.  are 

on a same real vector line, but  this contradicts the condition (2) fulfilled by A. 

Thus a = b - -  c = 0. | 

Let us construct the 2-form w. The standard K/ihlerian form of C ~ is given 
?% 

by 12(x, y) = Im(x,  y) = Im (~-~j=l xj#j) .  Denote by f~M its restriction to M.  

Recall that  the Sl-act ion on M is induced by the vector field iR. Observe tha t  

i iR~M ---- 0 and tha t  ~ M  is closed, being a restriction of a closed form. This 

implies tha t  LiR~M = O. It  follows from these facts that  there exists a (unique) 

closed 2-form o Jr on M / S  1 such that  lr*~t -- 12M. Now define w as being equal 

to ( r  1 (cf. diagram (D)). 
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PROPOSITION 2: The 2-form w is transversely Kghlerian with respect to 71. 

Proof." The vector fields U and V on M defined by 

n 

U = i .  Z (  Re Aj)Zj~zj and V = i .  ~-~( Im Aj)zj oOzj 
j = l  j----1 

commute  with iR and therefore they project onto vector fields 7r, U and 7r.V on 

M/S  1. One has r  = r  -- i~? and r V -- r  -- r  - ~) = -7/. Since 

(TM)z = {r e C"l Im(z, r = Im{U, ~) = Ira(V, ~) = 0} 

= {r c c"  I a ( iRz ,  r = a(U , = a(V , r = 0}, 

K e r ~ M  is generated by JR, U and V. This implies that  Kerwl is generated by 

r . U  and r . V .  Using the fact that  w = (r one obtains Kerw = Cy.  

Since the 2-form w is closed by construction it is sufficient to prove that  it 

induces a positive definite Hermitian metric on TN/C~I. Let us denote by TcM 
the maximal  complex subbundle of TM, that  is TcM= TM n iTM. One has 

(TcM)~ = {~ E C~[ (z, ~} = (U, (} = (V, ~) = 0}. 

The bundle ToM is preserved by the Sl-action induced by iR, being the restric- 

tion of a holomorphic action, and projects into a complex bundle lr. (TOM) over 

M/S  1 included in T(M/S1). Moreover, given z E M there is a commutat ive 

diagram 

(TcM)z 

(~r.(TcM)),~(z) ~ T($/C x C*)r 

where 7r, is a C-linear isomorphism and the maps r  and r  are C-linear in- 

jections. The image space r  is naturally identified to the quotient 

(TN)r and the restriction w r of w to it is J-invariant (here J = i). There- 

fore the. Hermit ian form associated to w t is positive definite since the same is 

true for the restriction of aM to (TcM)z. This implies that  w is transversely 

K/ihlerian with respect to ~?. | 

To each manifold N = N(A) we associate an integer k(N) defined as being the 

least positive integer s such that  e s = 0, where e E H2(M/S 1) is the Euler class 

associated to the Sl-bundle  ~r: M ~ M/S  1. When N is diffeomorphic to the 

product  of two spheres (the case considered in [2]), then k(N) = 1. Otherwise 
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1 < k(N)  < dime N (cf. [3] where a combinatoric definition of k(N)  in terms 

of A is also given). Observe now that  the Euler class e is represented in the de 

Rham group H 2 ( M / S I , ~ )  by the 2-form 2wl. This is verified as follows. The 

restriction a on M of the 1-form/3 on C n defined by 

fl(t) = - Im(R, t> 

satisfies (~(iR) = 1 and a direct computation shows d~ = 2~. Therefore da  = 

~M = r*(2wl).  Finally, one sees that  k(N)  is the least positive integer s such 

that  w ~ is exact. 

Using Proposition 1 one obtains the following theorem: 

THEOREM 1: Every analytic subset of N of pure dimension >_ k(N)  is tangent 

to ~1. In particular, every complex hypersurface of N is tangent to 7 l. 

In the case where N is diffeomorphic to a product of two spheres, k (N)  = 1 

and therefore any analytic subset of N of positive dimension is tangent to ~1. 

4. S u b m a n i f o l d s  o f  N in t h e  gener ic  case  

Let A ---- ( A I , . . .  , An) E C n be a sequence of non-zero complex numbers fulfilling 

conditions (1) and (2) as in Section 2. We say that  A satisfies the genericity 

condition (C) if 

p 

(C)  VCl,. . .  ,c,~ E Q with E c J  = 0 one has 
j=l  

P 

E EjAj --~ 0 ~ cj -~ O Yj .  
j=l  

In any given manifold N = N(A)  there is the following class of complex sub- 

manifolds. Let I be a subset of {1 ,2 , . . .  ,n} such that  (Aj)jel is in the Siegel 

domain and denote 

21 = {z  = ( z l , . . . ,  c S l z j  = 0 for j r I}. 

Then ~I  is saturated by the action of C x C* and 

N I : S I / C  x C* 

is a closed complex submanifold of N. The following theorem says that ,  in the 

generic case, any complex submanifold of a certain dimension is of this type. 
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THEOREM 2: Assume that A fulfils the genericity condition (C). Then any ana- 
lytic subset of  N of  pure dimension > k(N) is a union of manifolds NI. 

Remark: As b~fore, in the case of a product of spheres (~f. [2]), the conclusion 

holds for any analytic set of positive dimension. In this case, a partial description 

of the analytic subsets of N, when no genericity assumptions are made, was given 

in [2]. 

Proof: The open subset (C*)n of C n is contained in S and saturated by the 

action of C x C*. The quotient 

C = (C' )" /C • C" 

is an open and dense subset of N. It is sufficient to prove that  any analytic subset 

of G, which is tangent to T/, is G itself. In fact, an analytic subset Y of N in the 

hypothesis of the theorem is tangent to 0. If Y contains a point of G then Y f3 G 

is G itself and Y = N. Otherwise Y must be contained in some N1 (I ~ 0). But 

N1 is also a LM-V manifold associated to some AI C A and, since A satisfies the 

genericity condition (C), so does At. Moreover, k(Nr)  < k(N) as one can see by 

considering the restriction of wl to N1. Then one concludes by induction. 

Notice that G is a complex Lie group and that the holomorphic vector field 7/ 

is left invariant. In fact G is isomorphic to the group (C*)V/C, with p = n - 1, 

the isomorphism being induced by the map 

Zl zn--1  
( z l , . . . , zn )  ~ wl = - - , . . . , w  v =  

Zn Zn ] 

and where the C-action on (C*)P is the one associated to the vector field 

p 

~' = ~ p i w i ~ - ~ i  with Pi = Ai - An. 
i=1 

Then the holomorphic vector field r / is  seen as the projection of the vector field 

rf P = ~i=l (Re  pi)wi~'~. We take from now on this new model for G. Remark 

that  the genericity condition (C) is equivalent to saying that  the coefficients 

p l , . . . ,  pp are linearly independent over Q. 

Let ~v denote the canonical projection of (C*) p onto G and set g = v~((S1)V). 

Let Y be an analytic subset of G tangent to r/. We assume for convenience that  

the identity element e of G belongs to Y. The statement will follow from the 

following facts: 
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(a) the compact subgroup K is the closure of the complex one-parameter group 
generated by r/, and 

(b) (TG)r = (TK)~ + i . (TK)r  

In fact, since Y is tangent to Cy?, condition (a) implies that  Y contains K and 
then Y = G by condition (b). 

The Lie algebra Lie((C*) v) of (C*) v is naturally identified to O'  in such a 

way that the exponential map is given by (wl , . . .  ,wv) ~-~ (eW',. . .  ,eWe). Then 

we have Lie (($1) v) = i R  p and Lie(G) -- CP/C �9 ~, where ~ = ~ = 1  pigi and 

e'l, �9 �9 �9 ~'p denotes the canonical basis of C v. Notice that the Lie algebra morphism 
w.  coincides with the canonical projection C p --~ Lie (G). Now (b) is obvious 

since (TK)~ = va. Lie ((S 1)p) and Lie ((S 1)p) + i .  Lie ((S a)p) = Lie ((C*)P). 

The vector f/ in C v associated to the left invariant vector field ff  is f/ = 
P ~-'~i=1 (Re pi)gi. The two vectors i~ and ~ -  f/belong to Lie ((S1)P). This implies 

that Cr / i s  included in Lie (K). In order to conclude it is sufficient to prove that  

the subgroup H of ($1) p associated to the Lie subalgebra generated by i f / and  

~-~/ is  dense in (S 1)p. For this we show that any continuous H-invaxiant function 

f on (S 1)p is constant. Given m E 7,v, let f ( m )  denote the associated Fourier 

coefficient of f .  For any t E R one has 

](m)- ei t (E (R~"h)'~k) = f(m) 

and 
] ( m ) - e l t ( E  ('m"h)mk) = ] (m) .  

This means that,  if ] ( m )  # 0, then 

= = 0 

and therefore ~ mkpk ---- 0. But the Q-independence of the p t  implies m = 0, 

showing that f must be constant. This finishes the proof. | 
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